
Homework 4
Due: Thursday Oct 31, 2019, 9:55 am

To submit:

- Save your work as a .ipynb file. Use the filename: ​LASTNAME_HW4.ipynb
- Upload the file to the ​Homework 4 ​Activity in Moodle

Collaboration:
You may work with other students, but each student should write their own code for the
assignment separately. In a comment at the top of your homework please indicate the people
with whom you worked on the assignment.

Assignment goals:
In this assignment you’ll use random number generators to randomize the conditions of an
experiment; continue analyzing the categorized free recall data we used in the Midterm and in
class; and program a more complete version of a recognition memory experiment.

Problem 1: Randomization of experimental conditions (30 pts)
Psychologists often need to randomize the sequence of conditions in an experiment to avoid
order effects​ in subjects’ responses. Suppose you had an experiment with 3 blocks and you
wanted 3 conditions within each block to be randomized in terms of presentation order.
Suppose further that you have the requirement that your design have no consecutive repeats.
The following design would be considered valid: ​1 2 3 2 3 1 3 1 2​ but this one would be
invalid: ​1 2 3 2 1 3 3 2 1​.

Write code that takes in two parameters (​nblocks ​ and ​nconds ​) and creates a randomized
sequence of ​nconds ​ across ​nblocks ​, subject to the constraints described above.

Problem 2: Analysis of similarity in category recall (35 pts)
We have already spent some time analyzing the data in ​midterm_catfr_data.txt ​, looking
at how performance on categorized free recall is related to performance on standard free recall
in participants that performed both tasks. In this problem, what you will do is determine the
pairwise relationships​ in recall performance between categories.

For each unique category in the dataset, calculate the across-participant correlation between
recall performance for that category and each other category. For example, for Trees you would
calculate the correlation in recall performance between Trees and Landscapes, Trees and Zoo
animals, Trees and Instruments...Repeat this process for each pair of categories.

Since there are 26 unique categories, you should store your correlation values in a
2-dimensional numpy array that has size 26 x 26. Each element of the array will contain the
correlation between proportion recall for the corresponding pair of categories.

In this analysis, since we are ​not​ comparing to standard free recall, you should use all the data
from all subjects that participated in the categorized free recall experiment.

Which pair of categories has the highest correlation in recall performance? Which pair
has the lowest?

Problem 3: Program the encoding and test phases of a recognition memory experiment
(35 pts)
Write code for an experiment that will present a list of words one at a time during the encoding
phase of a recognition memory experiment, and will then present the same words during the
test phase. To do this, read in the words from ​wordpool.txt ​. Set two variables at the start of
the experiment (​ntargets ​ and ​nlures ​) that I can modify when I run your code to change how
many targets are presented during encoding and how many targets + lures are presented during
test. After all of the words are presented during encoding, your experiment should then present
the user with a screen asking the user to press a button to continue on to the test phase of the
experiment. The code should wait at this screen indefinitely until a key is pressed.

Your code should use ​ntargets ​and ​nlures ​to ​randomly​ sample from the set of words in
wordpool.txt ​and use the random sample as stimuli in the experiment. Be sure that your
random samples of targets and lures do not overlap!

Set a variable at the beginning of your code to define how long to present each stimulus during
encoding (use 1 second as the default). During the test phase you should have the participant
press either ​j ​ (old) or ​k ​ (new) to indicate their response. You should store the participant’s
response to each item in a ​numpy ​ array.

Once the experiment is finished, your code should (1) close the experiment window; (2)
calculate the hit rate and false alarm rate for the participant; and (3) display the hit and false
alarm rates as output.

